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M O D E L S  F O R  T H E  B U C K L I N G  OF B A R S  

ON AN E L A S T I C  B A S E  

N. S. Astapov UDC 539.3 

The present work deals with an (m + 1)-parameter family of mathematical models describing the 
postbuckling behavior of a hinge-supported bar lying on a nonlinearly elastic base and loaded by an axial 
compressive force. Analytical expressions for the buckling modes and load-deflection dependence are given 
which are constructed using the perturbation method. Analysis is performed of the initial behavior of the 
system as a function of the parameters characterizing the base stiffness. It is noted that the postbuckling 
behavior of the system can be unstable. Contradictions are revealed that occur when some well-known 
models [1] of an elastic base are used to describe the buckling of a bar. By using catastrophe theory, models 
of the family are indicated that reflect the buckling process most adequately [2]. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  We consider a hinge-supported bar of length L lying on a nonlinear- 
elastic base and loaded by an axial compressive force P whose direction remains unchanged upon deformation 
of the bar [3, 4]. The length L of the axial line of the bar is assumed to be invariable. We denote by l the 
distance between the bar ends. It is assumed that the bar axis can bend only in the plane. Let us investigate 
the postbuckling behavior of the bar-base system predicted by different models. 

2. Fami ly  of Mode l s .  Let us write the expression for the total potential energy of the system in the 
form 

L Lw 

0 O0 

where E I  is the flexural stiffness; ze is the curvature of the bar axis; the parameters ci take into account the 
linear (i = 1) and nonlinear (odd i >t 3) components of the base stiffness [3]; s is the length of the bar axis 
arc. The function w(s) (0 <~ s <~ L) describes [3-5] the deformed position of the bar and must satisfy the 
geometric boundary conditions of the problem: 

w(O) = w(L) = Wss(O) = wss(L) = 0. (2.2) 

The factor (1 - w2s) ~/2 in expression (2.1) takes into account the geometric nonlinearity of the base, i.e., the 
change in the response of the base upon deflection of the bar [4]. Let us express the curvature ae and the 
distance I in terms of the function w(s) and substitute the expression into (2.1). The function w(s) minimizing 
functional (2.1) satisfies the Euler equation, which can be written, with accuracy up to sixth-order terms 
containing the function w(s) and its derivatives, in the form 

2 2  ( 1 2 3W4 ) W,s EIwssss+EI(w2s+4wsw...+4w~ws.s+5w.w..)w..+P l+~w.+~ 

(2.3) 
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Solving Eq. (2.3) subject to boundary conditions (2.2) by the perturbation theory method, as in [3, 4], 
we obtain an expression for the initial buckling mode of the bar in terms of n semiwaves 

nTrs 
w,(s) = a,,sin T + kna3nsin3 nlrs -.~-.- + O(a~) (2.4) 

[the magnitude a ,  is approximately equal to the bar deflection amplitude (it is assumed that a a,,/L << 1), 
kn is a variable that depends on n, q ,  c3, a n d / / b u t  not than on s], and the load-deflection relationship is 

P, = EI  n2 + -~ + 8n 2 + O(a~), (2.5) 

where rl = q ( L / r ) 4 / E I ;  r3 = c3(L/r)S/EI.  For rl = n2(n + 1) 2, apart from the symmetric equilibrium 
forms (2.4), asymmetric forms can exist, which are considered in detail in [3] for fl = 1, c4 = 0 (i > 3) and in 
[4] for ci = 0 (i > 1). Therefore, the case where rl = nZ(n + 1) 2 is not discussed here. 

3. I n s t ab i l i t y  of  P o s t b u c k l i n g  Behav io r .  Analysis of expression (2.5) shows that the stability of the 
system's postbuckling behavior for the mode wa(s) is determined by the sign of the expression n 6 - n2rl (3 - 
/~) + 6r3, which depends on three parameters: fl, r h  and r3. Thus, for ri = 0 we have the classical problem 
of the buckling of an elastic bar without a base, the postbuckling behavior of this system being stable for 
every mode. For rl = 1, r3 = - 1 ,  and fl = 2, which corresponds, with accuracy up to forth-order infinitesimal 
terms with respect to bar buckling, to the model in [6], we obtain n 6 - n 2 - 6 < 0 for n = 1, i.e., unstable 
initial postbuckling behavior in terms of one semiwave. The possibility of unstable postbuckling behavior in 
some classical models was shown in [4] and established experimentally in [7]. It is therefore natural to expect 
that in models that adequately describe [2] the buckling of a bar on an elastic base, the possibility of unstable 
postbuckling behavior cannot be denied. For instance, there is no point in choosing a model in which ~ > 3 
and ri > O. 

4. P o t e n t i a l  Ene rg i e s  of  E q u i l i b r i u m  Conf igura t ions .  Let us now classify the various buckling 
modes for any fixed loading value P with the aid of the corresponding values of potential energy. Recal that 
examination of the case of rl  = n2(n + 1 )  2 involves no fundamental difficulties, and for some models it was 
carried out in [3, 4] and, therefore, is not given here. From (2.1), with accuracy up to fourth-order terms 
(inclusive) containing the function w(s) and its derivatives, we find 

L L Lw Lw 
U ~ I E I f w ~ s ( I + w ] ) d s - p / ( l w s + ~  

0 0 O0 O0 

which does not depend on c/, i >/5. From (4.1) and the analytical representation of the buckling modes (2.4) 
it is clear that, in calculating the potential energy with accuracy up to a4,, it is sufficient to take into account 
in (2.4) a first-order term containing am. For the mode wn we obtain 

u n ~ L  (L)6Ela4n[-n6-t-n2rl(3-7~)-l jr3],  (4.2) 

i.e., the function of the total potential energy of the ideal system that lost stability for the mode w~ has the 
form of a germ of a cusp catastrophe (Un > 0), of a dual cusp (Un < 0), or of a catastrophe that is more 
complicated than a cusp [8]. Since cusp and dual cusp catastrophes are stable, small perturbations in the 
model of a bar on an elastic base that take into account the imperfectness of the system (initial imperfections, 
eccentricity in loading) do not change the type of catastrophe and, hence, do not affect significantly expression 
(4.2). 

5. E m e r g i n g  C o n t r a d i c t i o n s .  Note that the potential energy (2.1) of the system having the 
undeflected shape w - 0 is equal to zero. It is natural to regard the mathematical model of the bar-base 
system as inadequate to physical reality [2] if in the case where the load exceeds the critical value the total 
potential energy of the deflected state turns out to be higher than the potential energy of the undeflected 
system. For the models considered, this requirement involves the following prohibition: the function of the 
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potential energy must  not change the type of catastrophe from a dual cusp to a cusp. Therefore, to avoid 
any contradiction with the min imum potential energy principle one should choose only models for which the 
inequality 

--n 6 + n2rl(3 -- 7/3) -- 6r3 ~< O, (5.1) 

holds, for instance, the model of a bar without an elastic base (ri = 0) and the model considered in [6] with 
rl = 1, ra = - 1 ,  and/3 = 2 because - n  ~ - 11n 2 + 6 ~ 0 for any natural n; choosing the model with rl = 0, 
we find from (5.1) the restriction r3/> - 1 / 6 .  Some classical models [1, 5], however, do not satisfy inequality 
(5.1) [4]. If the postbuckling behavior of the system is considered only in the vicinity of the first critical 
loading, it is necessary to fulfill the additional restrictions 

(n - < r,  < + 1) 5, (5.2) 

which are used to determine the number  of semiwaves of a sinusoid to whose shape the bar begins to buckle. 
For the model with ra = - r x  < 0, we obtain from (5.1) and (5.2) a restriction on the parameter/3,  namely, 
/3/> 5/4, which is satisfied by the model of [6]. Dividing both sides of inequality (5.1) by n 6, passing to the 
limit in n, and taking into account (5.2), we have 

2 - 7/3 <<. 6 | i m C r d n  6) 

and the restriction/3/> 2/7 for r3 = const. If for the adequacy [2] of the selected model we take into account 
additionally, for at least one n, the necessity of fulfilling the inequality 

n 6 - n2rl(3 - / 3 )  + 6r3 < 0, (5.3) 

which ensures the possibility of unstable postbuckling behavior (see Section 3), from (5.1). and (5.3) it follows 
that  fl 1> 0. The parameter  /3 characterizes [4] the geometric nonlinearity of the elastic bar, and in [3] a 
detailed study is performed of the model (/3 = l, cl > 0, and c3 ~ 0), which is free of some imperfections 
inherent in the models of [1, 5]. Note that  the main terms of expressions (2.5) and (4.2) are independent of r{ 
(i > 3); therefore, the choice of the parameters c4 (i > 3) does not affect significantly the description of the 
initial postbuckling behavior. However, in choosing the coefficients cl, ca, and/3 it is necessary to check the 
fullfilment of inequality (5.1) for any n, and of inequality (5.3) for at least one n. 
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